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Motivation

Goal: Develop a classification
model that will predict whether
a pitch will be called a strike
or ball when the batter does not
swing at 1t

Why i1s this important:

o Allows teams to leverage
predictions of calls for various
applications:

m Evaluating catcher framing
m Making swing decisions
m Analyzing umplre tendencies




Data Source

This data was provided by the
Philadelphia Phillies
Dataset sourced from Baseball

Savant
o An MLB-owned platform
The use of this data is for

non-commercial and educational

purposes only
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Description of Dataset

The dataset contains 351,062 rows of the following columns:

Contains unique identifiers for

Game and Player Identifiers games, plate appearances,
pitchers, batters, and catchers

Pitch type, count of
Pitch Details balls/strikes, pitch outcome,
and zone

Player Attributes Handedness of batter and
pitcher

Vertical / horizontal position
Pitch Location of the ball and strike zone
boundaries
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Evaluation Metrics

The strength of our classification models are measured by:

2 Measures the overall
ccurac
Y correctness of the model

o Quantifies the model’s ability
Precision , o
to avoid false positives

Assesses the model’s ability to
Recall identify all actual positive

instances

A combination of precision and
Fl recall that offers a balanced

measure




Preprocessing
® 195 rows contained null values
o This is less than 1% of the [ sgerion
data, so these rows were dropped /
® ‘pitcher name’ 1is dropped
®¢ Changed format of columns: S PreprDoacteassing .

o ‘description’ ) '

o ‘Stand’

o ‘P throws’ A———
_— Data Reduction or

\ ’ Dimension Reductlon
o zone \ '
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Exploratory Data Analysis Overview

Statistical Analysis of:

o Combination of Pitcher and
Batter Orientation

o Pitch Type

Correct Call Percentage by Pitch
Type

Correct Call Percentage by Pitch
Number

Correct vs Incorrect Call with
Standardized Strike Zone
Percentage of Strikes Called by
Pitch Zone

N



Combinations of Pitcher and Batter
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Correct Call Percentage by Pitch
Type

Percentage of Correct vs Incorrect Calls by Pitch Type
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Correct Call Percentage by Pitch
Number

Correct vs Incorrect Calls by Pitch Number (Percentage) Correct vs Incorrect Calls by Pitch Number
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Correct and Incorrect Calls 1n a
Standardized Strike Zone

Correct vs Incorrect Call with Standardized Strike Zone
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Vertical Zones

Percentage of Correct Call by
Strike Zone

Salvador Perez Overall Adam Wainwright

Strike Percentage Distribution for Pitcher Adam Wainwright by Zone

Percentage of Strikes Called by Pitch Zone

Strike Percentage Distribution for Catcher Salvador Perez by Zone
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Modeling

Overview

Naive Model

True baseline with no machine
learning ability

Logistic Regression

Simple, easy to interpret, and
strong baseline for
classification

XGBoost Classifier

Able to handle nonlinear data,
weigh feature importance, and
resist overfitting

MLP Classifier

Able to model complex,
nonlinear relationships - can
provide stronger results with

more data




Naive Model

Naive Model

Classification Report:

45000

precision recall fl-score support ciiled o i =
Called Ball 0.67 0.67 0.67 70521
Called Strike 0.33 0.33 0.33 34739 BE | 25000
Called Strike 23340 11399 20000
accuracy : 105260
macro avg : : : 105260 e
weighted avg : . ¥ 105260 Called Ball Called Strike -

Predicted Labels




Loglistic Regression

Classification Report:
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XGRoost Classifier

Classification Report: XGBoost Classifier
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Multi-Layer Perceptron Classifier

Multi-Layer Perceptron

Classification Report:
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summary oOf Results

Model Accuracy Precision Recall F1
Naive 0.56 0.56 0.56 0.56
Logisuc 0.92 0.92 0.92 0.92
Regression
ASBOOSE 0.93 0.94 0.93 0.93
Classifier
MLP Classifier 0.93 0.93 0.93 0.93




Best Model

Best Overall Model: XGBoost
Classifier

Best Model for Precision: Logilstic
Regression and MLP Classifier

Best Model for Recall: XGBoost
Classifier

The choice of model should be
guided by the requirements of the

application and the relative

importance of precision vs. recall

N
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Challenges and Limitations

Imbalance of the dataset
o 66.99% is labeled as a ‘ball’
Model interpretability
o XGBoost and MLP Classifier can
offer high accuracy, but are
difficult to interpret
Models are only as good as the

data they are trained on

o May not be accurate with new data




BN

Recommendations / Future Work

Test oversampling, undersampling, and SMOTE to see what
provides the best results

Explore additional features that could impact pitch
calls

o Score of the game, weather, umpire, number in attendance,

etc.
Implement cross validation techniques
o Will generate a more robust model
Update with new data to help model adapt to any changes

in umplring patterns or rules

N



Conclusion

EDA gave us a significantly better sense of which
features are important to the models

o 1.e. pitch type, pitch location

Both XGBoost and MLP Classifiers demonstrated improved
predictions compared to umpires

o This i1s a step towards automating umpire decision making
Introducing new data would be a great test of how robust
our models are

The project showed the potential of ML to enhance
baseball strategy

N



Workload Distribution

Caleb

Proposal
Visualization
Modeling
ReadME

Report
Presentation

Hashim

Proposal
Preprocessing
Visualization

Presentation

Robert

Proposal
Preprocessing
Visualization

Presentation




