Can NBA Player's Salaries be Predicted from Statistics?

CALEB MILLER

ECON 381

Introduction

This presentation will be walking through my regression project

Will be asking "Can NBA Player's salaries be predicted from statistics?"

Could be useful because NBA is an analytics driven league

Initial Variables: pts, pf, tov, blk, stl, ast, trb, orb, ftpercent, twopercent, threepercent, fgpercent, mp, Inage

- Inage to account for diminishing returns
- Semi-log form

Literature Review

Examined three studies asking the same question

Study A: R-squared of 0.674 F-statistic significant

Free-throw percentage and games played most impactful

Study B: R-squared of 0.9728 F-statistic significant

Assists and turnovers most impactful

Study C: R-squared of 0.613

• Field-goal percentage and points per game most impactful

Data Sources

Statistics for 2020-2021 season collected from basketballreference.com

• Reliable for up-to-date NBA statistics

Limited to 235 players who played 10+ minutes per game

• Range from minimum contract to superstar

Multicollinearity could be present due to orb, trb & two-point, three-point, and fieldgoal percentage

Summary Statistics

. estat sum

	Estimation samp	le regress	Nur			
	Variable	Mean	Std. dev.	Min	Max	
	salaryMil	9.326825	9.554644	.358295	43.00636	s
	pts	12.10474	6.401963	3.7	32	V
	pf	1.97931	.5680554	.4	3.5	а
	tov	1.409052	.8260137	.2	4.8	
	blk	.4788793	.3951355	0	2.7	
	stl	.8112069	.346103	.2	2.1	
	ast	2.7125	2.016183	.4	11.7	
	trb	4.575862	2.35446	.9	13.5	
	orb	.9965517	.7726304	.1	4.1	
Skewed left – most players are	ftpercent	.7757759	.0992324	.444	.957	
good free-throw shooters	twopercent	.529944	.0697835	.38	.766	
	threepercent	.3393405	.1043944	0	1	So
	fgpercent	.4720862	.0724792	.353	.763	th
	mp	25.4625	6.459385	11	37.6	th
	lnage	3.249145	.1599982	2.944439	3.610918	Se

Skewed right – more low salaries We can also see this in pts, tov, blk, ast, and orb

Somehow, a player shot 100% from three – Drew Eubanks – shot 2/2 on the season – extreme outlier Second place: Joe Harris (47.5 percent)

The Model

Estimating signs of coefficients

- Positive: pts, blk, stl, ast, trb, orb, ftpercent, twopercent, threepercent, fgpercent, mp, Inage
- Negative: pf, tov

Estimating highest impact: pts, ast

Ideal sets of variables will account for:

- Offensive stats: pts, ast, trb, orb, ftpercent, twopercent, threepercent, fgpercent
- Defensive stats: blk, stl
- Usage/longevity stats: mp, lnage

I ran this to deal with multicollinearity

Results: Correlation Matrix

		mp	fgperc~t	threep~t	twoper~t	ftperc~t	orb	trb	ast	stl	blk	tov	pf	pts :	salary~l	lnage
	mp	1.0000														
	fgpercent	0.0252	1.0000													
-f 0 0	threepercent	0.1249	-0.4023	1.0000												
	twopercent	-0.0360	0.8440	-0.3266	1.0000											
10.0	ftpercent	0.2922	-0.3535	0.4754	-0.3625	1.0000										
oo high	orb	0.1607	0.7257	-0.4790	0.5612	-0.4169	1.0000									
	trb	0.4870	0.5680	-0.2805	0.4393	-0.2188	0.8192	1.0000								
	ast	0.6386	-0.0414	0.0952	-0.1355	0.2677	-0.0390	0.2533	1.0000							
	stl	0.5746	-0.0966	0.0553	-0.1307	0.1349	-0.0026	0.1898	0.6704	1.0000						
	blk	0.1362	0.5836	-0.3756	0.5178	-0.3644	0.6500	0.5966	-0.1314	0.0559	1.0000					
	tov	0.7323	0.0964	0.0308	-0.0220	0.1492	0.1614	0.4669	0.8367	0.5257	0.0682	1.0000				
	pf	0.4598	0.3087	-0.1565	0.2471	-0.1177	0.4414	0.5411	0.2120	0.2573	0.4600	0.4175	1.0000			
	pts	0.8261	0.0983	0.1789	-0.0001	0.3658	0.1296	0.4364	0.6435	0.4273	0.0663	0.8144	0.3397	1.0000		
	salaryMil	0.6052	0.1092	0.0097	0.0277	0.2236	0.1629	0.4183	0.5939	0.4625	0.1141	0.6003	0.2656	0.6566	1.0000	
	lnage	0.0171	0.0031	-0.0083	0.0214	0.1278	0.0003	0.0250	0.0706	0.0550	0.0139	-0.0536	-0.0171	-0.0422	0.3537	1.0000

Orb correlated to trb 0.8192 Twopercent correlated to fgpercent 0.8440 Ast correlated to tov 0.8367 Pts correlated to mp 0.8261

Correlation of 0.8 considered too high

Results: VIF Table

estat vif

Variable	VIF	1/VIF			
tov	8.92	0.112160			
ast	6.51	0.153512			
pts	6.47	0.154630			
orb	6.40	0.156304			
trb	5.94	0.168389			
fgpercent	5.86	0.170776			
mp	4.95	0.202014			
twopercent	3.89	0.256782			
stl	2.38	0.419643			
blk	2.37	0.422804			
ftpercent	1.99	0.502786			
pf	1.83	0.544995			
threepercent	1.59	0.630786			
lnage	1.10	0.912229			
Mean VIF	4.30				

VIF of 10+ extremely problematic VIF of 5+ moderately problematic
All VIFs under 10 so narrow examined variables to those with correlation issues
Orb (6.4), trb (5.94), twopercent (3.89), fgpercent (5.86), ast (6.51), tov (8.92)
Because of the high correlation and problematic VIFs, I look for redundant variables
Two-point, three-point, and field-goal percentage are redundant so fgpercent will be omitted from the regression

Assists and turnovers are redundant as well (high assists typically leads to more turnovers) so turnovers will be excluded

Offensive rebounds and total rebounds are redundant so offensive rebounds will be left out of this regression

Results: Regression Analysis

regress salaryMil pts pf blk stl ast trb ftpercent twopercent threepercent mp lnage

Source	SS	df	MS	Numb	Number of obs		232
		1982	201202	- F(11	, 220)	=	35.32
Model	13464.7545	11	1224.06859	Prob	> F	=	0.0000
Residual	7623.519	220	34.6523595	R-sq	uared	-	0.6385
				- Adj	R-square	d =	0.6204
Total	21088.2735	231	91.2912274	Root	MSE	=	5.8866
salaryMil	Coefficient	Std. err.	t	P> t	[95%	conf.	interval]
pts	.7690383	.1233057	6.24	0.000	. 5260	268	1.01205
pf	617709	.8820382	-0.70	0.484	-2.356	035	1.120617
blk	.317883	1.483918	0.21	0.831	-2.606	632	3.242398
stl	3.466186	1.684216	2.06	0.041	.146	923	6.785449
ast	.7596816	.3302473	2.30	0.022	.1088	285	1.410535
trb	.6243223	.2697608	2.31	0.022	.0926	763	1.155968
ftpercent	1461917	5.212931	-0.03	0.978	-10.41	986	10.12748
twopercent	-4.061483	7.020336	-0.58	0.563	-17.8	972	9.774234
threepercent	-5.642433	4.454311	-1.27	0.207	-14.42	101	3.136148
mp	0796474	.1294005	-0.62	0.539	3346	706	.1753757
lnage	21.12414	2.506814	8.43	0.000	16.1	837	26.06459
_cons	-69.06792	9.295706	-7.43	0.000	-87.38	795	-50.74789

salaryMil = -69.068 + 0.769(pts) - 0.618(pf) + 0.318(blk) + 3.466(stl) + 0.760(ast) + 0.624(trb) - 0.146(ftpercent) - 4.061(twopercent) - 5.642(threepercent) - 0.080(mp) + 21.124(lnage)

Model passes the hypothesis test and is statistically significant

Adj. R-squared of 0.6204 meaning this model can account for 62.04 percent of variation in salaries

Five out of the eleven variables pass their t-tests and are significant Unfortunately, pf, blk, ftpercent, twopercent, threepercent, and mp failed and are problematic

Most impactful statistics on salary (in order) are age, stl, twopercent, threepercent, and pts

The coefficients of two- and three-point percentage are misleading, however, since the results are percentages

Conclusion

To answer the question "Can NBA Player's salaries be predicted from statistics", I used a semi-log regression

This model was statistically significant at the 0.05 level

5/11 variables passed t-test showing significance

Five most impactful statistics from my regression (in order) are age, stl, twopercent, threepercent, and pts

There are commonalities between my findings and other literature

• The statistics that are most impactful varies from dataset to dataset

Further research is needed to conclude what the most impactful statistics on salary are

However, to answer the title of the project – yes – to an extent

Not completely reliable